首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4111篇
  免费   374篇
  国内免费   345篇
工业技术   4830篇
  2024年   9篇
  2023年   110篇
  2022年   81篇
  2021年   110篇
  2020年   143篇
  2019年   123篇
  2018年   111篇
  2017年   123篇
  2016年   162篇
  2015年   165篇
  2014年   242篇
  2013年   353篇
  2012年   273篇
  2011年   291篇
  2010年   242篇
  2009年   263篇
  2008年   292篇
  2007年   254篇
  2006年   233篇
  2005年   203篇
  2004年   139篇
  2003年   157篇
  2002年   104篇
  2001年   91篇
  2000年   64篇
  1999年   54篇
  1998年   54篇
  1997年   34篇
  1996年   51篇
  1995年   43篇
  1994年   52篇
  1993年   28篇
  1992年   32篇
  1991年   20篇
  1990年   28篇
  1989年   11篇
  1988年   13篇
  1987年   11篇
  1986年   13篇
  1985年   9篇
  1984年   8篇
  1983年   8篇
  1982年   8篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1975年   2篇
  1960年   1篇
  1959年   2篇
  1955年   1篇
排序方式: 共有4830条查询结果,搜索用时 27 毫秒
1.
Non-precious metal-based catalysts for oxygen evolution reaction (OER) have been extensively studied, among which the transition metal X-ides (including phosph-ides, sulf-ides, nitr-ides, and carb-ides) materials are emerging as promising candidates to replace the benchmark Ir/Ru-based materials in alkaline media. However, it is controversial whether the metal Xides host the real active sites since these metal Xides are thermodynamically unstable under a harsh OER environment—it has been reported that the initial metal Xides can be electrochemically oxidized and transformed into corresponding oxides and (oxy)hydroxides. Therefore, the metal Xides are argued as “pre-catalysts”; the electrochemically formed oxides and (oxy)hydroxides are believed as the real active moieties for OER. Herein, the recent advances in understanding the transformation behavior of metal Xides during OER are re-looked; importantly, hypotheses are provided to understand why the electrochemically formed oxides and (oxy)hydroxides catalysts derived from metal Xides are superior for OER to the as-prepared metal oxides and (oxy)hydroxides catalysts.  相似文献   
2.
Nickel-based catalysts have attracted tremendous attention as alternatives to precious metal-based catalysts for electrocatalytic hydrogen evolution reaction (HER) in virtue of their conspicuous advantages such as abundant reserves and high electrochemical activity. Nevertheless, a great challenge for Ni-based electrocatalyst is that nickel sites possess too strong adsorption for key intermediates H1, which severely suppresses the hydrogen-production activities. Herein, we report a hierarchical architecture Cu/Ni/Ni(OH)2 consisting of dual interfaces as a high-efficient electrocatalyst for HER. The Cu nanowire backbone could provide geometric spaces for loading plenty of Ni sites and the formed Ni/Cu interface could effectively weakened the adsorption intensity of H1 intermediates on the catalyst surface. Moreover, the H1 adsorption could be further controlled to appropriate states by in-situ formed Ni(OH)2/Ni interface, which simultaneously promotes water adsorption and activation, thus both Heyrovsky and Volmer steps in HER could be obviously accelerated. Experimental and theoretical results confirm that this interface structure can promote water dissociation and optimize H1 adsorption. Consequently, the Cu/Ni/Ni(OH)2 electrocatalyst exhibits a low overpotential of 20 mV at 10 mA cm?2 and an ultralow Tafel slope of 30 mV dec?1 in 1.0 M KOH, surpassing those of reported transition-metal-based electrocatalysts and even the prevailing commercial Pt/C.  相似文献   
3.
4.
Liu  Song  Cui  Yuan-Zhen  Zou  Nian-Jun  Zhu  Wen-Hao  Zhang  Dong  Wu  Wei-Guo 《计算机科学技术学报》2019,34(2):456-475
Journal of Computer Science and Technology - DOACROSS loops are significant parts in many important scientific and engineering applications, which are generally exploited pipeline/wave-front...  相似文献   
5.
《Ceramics International》2020,46(6):7767-7773
Zinc and cadmium based cobalt ferrites ZnxCd0.375-xCo0.625Fe2O4 (where x = 0, 0.075, 0.125, 0.25) were successfully synthesized by a facile co-precipitation technique. Structural, optical and magnetic characteristics of the doped ferrites were systematically analyzed. X-ray Diffraction (XRD) pattern confirmed the formation of cubic spinel structure in all samples. Scanning electron microscopic analysis of surface morphology revealed cubic and spherical shaped ferrite particles. Fourier transform infrared (FTIR) spectroscopy confirmed the existence of metal oxygen (M − O) bonding in the prepared samples. Moreover, the prepared samples exhibited two frequency bands corresponding to phonon vibrational stretching in both octahedral and tetrahedral lattice positions. The optical properties were investigated in detail through photoluminescence (PL) spectroscopy and Raman spectroscopy. The PL spectrum confirmed the strong emission peaks in the ultraviolet to visible region of all the samples. Further, four active Raman modes, associated with cubic spinel structure are identified in all prepared samples. Finally, the magnetic characteristics are evaluated by using vibrating sample magnetometer (VSM) revealing ferrimagnetic and soft magnetic behavior of the samples. As the Zn and Cd co-doping in Co was increased, the Hc was decreased. The magnetic studies show the maximum Hc of 576 Oe for Cd doped cobalt ferrite, and maximum saturation magnetization (Ms) for Zn–Cd doped cobalt ferrite. It is envisaged that the newly prepared Zn–Cd co-doped cobalt ferrite would be appropriate for a number of important applications, for example, magnetic recording devices, sensors, actuators, high-density data storage devices, and biomedical equipments.  相似文献   
6.
Polyoxymethylene dimethyl ethers (PODEn) are extremely effective diesel additives to reduce soot formation during combustion. We introduce a series of Fe-Zn composite solid acid catalysts (SO42−/xFe2O3-yZnO), for the condensation reaction of methanol and paraformaldehyde (PF) with a cheap and feasible route to efficiently synthesize PODEn. These catalysts were characterized by different characterization techniques, namely BET, XRD, SEM, EDS, FTIR, and NH3-TPD and the results showed that Fe/Zn molar ratios strongly influenced the physicochemical characteristics of catalysts, thus affecting the methanol conversion and PODE1-6 and PODE3-6 selectivity. Accordingly, the methanol conversion was decreased and the selectivity of PODE3-6 was increased after increasing the Zn molar content. Comparatively, SO42−/Fe2O3-2ZnO exhibited superior catalytic activity among the various investigated catalysts due to the high acid density of strong acid sites. The optimal reaction conditions were observed to be at a 3.0 wt% catalyst loading (catalyst/reactant mass ratio), 2.5 hours ours of reaction time, a reaction temperature of 403 K, and a molar ratio of 3:1 of CH2O to methanol, achieving a high selectivity of 99.09% PODE1-6 and 28.23% PODE3-6 with 55.16% methanol conversion during the reaction.  相似文献   
7.
In this work, initial activation mechanism of CO2 over MgO supported Ni catalysts has been systematically studied through the periodic DFT calculations. In addition, the role of metal cluster, interface and support for CO2 activation is investigated and the active site is identified. CO2 is most favored to be activated on the interface instead of neither Ni cluster nor MgO support. The effective energy for this process is around 0.67 eV, and the dissociation of CO2 (0.62 eV) is the rate-determining step, since it requires much higher energy than that of the CO2 adsorption process (0.05 eV). Thus, the interface between metal cluster and support plays a key role for C=O bond activation. Moreover, CO1 is preferred to be adsorbed on the Ni cluster, while the O1 is likely to bind on Mg atom of support. To illustrate the adsorption behavior of CO2 at different sites, the Mulliken atomic charge and electron density difference have been calculated. It was found that the total amount of electron gain for CO2 binding at different sites follows the order of Interface (−0.03 e) < MgO support (−0.05 e) < Ni cluster (−0.07 e), and effective energy barrier rises linearly with the increase of electron gain of CO2 binding at different sites. In addition, electron gain of oxygen atom O1 and oxygen atom O2 of CO2 is the same for Ni cluster and MgO support, however, the electron gain of O1 and O2 is different for Interface. The difference of electron gain for two oxygen atoms shows the electron unbalance of CO2 molecule, which is in favor of C=O activation. This study could shed some light on understanding the active sites of CO2 thermal-catalytic activation over MgO supported Ni catalysts, and is helpful to elucidate the reaction on an atomic level.  相似文献   
8.
A novel gel polymer electrolyte (GPE) which is based on new synthesized boron‐containing monomer, benzyl methacrylate, 1 m LiClO4/N,N‐dimethylformamidel liquid electrolyte solution is prepared through a one‐step synthesis method. The boron‐containing GPE (B‐GPE) not only displays excellent mechanical behavior, favorable thermal stability, but also exhibits an outstanding ionic conductivity of 2.33 mS cm?1 at room temperature owing to the presence of anion‐trapping boron sites. The lithium ion transference in this gel polymer film at ambient temperature is 0.60. Furthermore, the symmetrical supercapacitor which is fabricated with B‐GPE as electrolyte and reduced graphene oxide as electrode demonstrates a broad potential window of 2.3 V. The specific capacitance of symmetrical B‐GPE supercapacitors retains 90% after 3000 charge–discharge cycles at current density of 1 A g?1.  相似文献   
9.
In this paper we present an integer programming method for solving the Classroom Assignment Problem in University Course Timetabling. We introduce a novel formulation of the problem which generalises existing models and maintains tractability even for large instances. The model is validated through computational results based on our experiences at the University of Auckland, and on instances from the 2007 International Timetabling Competition. We also expand upon existing results into the computational difficulty of room assignment problems.  相似文献   
10.
Induction machines (IM) constitute a theoretically interesting and practically important class of nonlinear systems. They are frequently used as wind generators for their power/cost ratio. They are described by a fifth‐order nonlinear differential equation with two inputs and only three state variables available for measurement. The control task is further complicated by the fact that IM are subject to unknown (load) disturbances and the parameters can be of great uncertainty. One is then faced with the challenging problem of controlling a highly nonlinear system, with unknown time‐varying parameters, where the regulated output, besides being unmeasurable, is perturbed by an unknown additive signal. Passivity‐based control (PBC) is a well‐established structure‐preserving design methodology which has shown to be very powerful to design robust controllers for physical systems described by Euler‐Lagrange equations of motion. PBCs provide a natural procedure to "shape" the potential energy yielding controllers with a clear physical interpretation in terms of interconnection of the system with its environment and are robust vis á vis to unmodeled dissipative effects. One recent approach of PBC is the Interconnection and Damping Assignment Passivity‐Based Control (IDA‐PBC) which is a very useful technique to control nonlinear systems assigning a desired (Port‐Controlled Hamiltonian) structure to the closed‐loop. The aim of this paper is to give a survey on different PBC of IM. The originality of this work is that the author proves that the well known field oriented control of IM is a particular case of the IDA‐PBC with disturbance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号